Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Radiat Isot ; 131: 77-82, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29175143

RESUMO

The photonuclear production of no-carrier-added (NCA) 47Sc from solid NatTiO2 and the subsequent chemical processing and purification have been developed. Scandium-47 was produced by the 48Ti(γ,p)47Sc reaction with Bremsstrahlung photons produced from the braking of electrons in a high-Z (W or Ta) convertor. Production yields were simulated with the PHITS code (Particle and Heavy Ion Transport-code System) and compared to experimental results. Irradiated TiO2 targets were dissolved in fuming H2SO4 in the presence of Na2SO4 and 47Sc was purified using the commercially available Eichrom DGA resin. Typical 47Sc recovery yields were >90% with excellent specific activity for small batches (<185 MBq batches).

2.
J Nucl Med ; 58(3): 514-517, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27688474

RESUMO

99Mo, the parent of the widely used medical isotope 99mTc, is currently produced by irradiation of enriched uranium in nuclear reactors. The supply of this isotope is encumbered by the aging of these reactors and concerns about international transportation and nuclear proliferation. Methods: We report results for the production of 99Mo from the accelerator-driven subcritical fission of an aqueous solution containing low enriched uranium. The predominately fast neutrons generated by impinging high-energy electrons onto a tantalum convertor are moderated to thermal energies to increase fission processes. The separation, recovery, and purification of 99Mo were demonstrated using a recycled uranyl sulfate solution. Conclusion: The 99Mo yield and purity were found to be unaffected by reuse of the previously irradiated and processed uranyl sulfate solution. Results from a 51.8-GBq 99Mo production run are presented.


Assuntos
Molibdênio/química , Fissão Nuclear , Aceleradores de Partículas/instrumentação , Radioisótopos/química , Geradores de Radionuclídeos/instrumentação , Compostos de Urânio/química , Desenho de Equipamento , Análise de Falha de Equipamento , Marcação por Isótopo/instrumentação , Marcação por Isótopo/métodos , Teste de Materiais , Nêutrons , Reatores Nucleares , Projetos Piloto , Doses de Radiação , Compostos Radiofarmacêuticos/síntese química , Compostos de Urânio/efeitos da radiação
3.
J Phys Chem B ; 116(30): 9043-55, 2012 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-22747437

RESUMO

Room-temperature hydrophobic ionic liquids (ILs) are considered for processing of spent nuclear fuel, including as possible replacements for molecular diluents in liquid-liquid extraction. This application requires radiation stability of the constituent ions. Previous research indicated that most of the anions that are currently used in the synthesis of ILs are prone to fragmentation under prolonged radiation exposure, which causes deterioration of the corresponding ILs. An exception to this general rule is phthalimide; unfortunately, this anion is too basic to be useful for extraction solvents, as these separations involve acidic conditions. The acidity of the imide can be increased by replacing the carbonyl groups by sulfonyl groups, which incidentally transform these imides into familiar artificial sweeteners such as saccharin. In the present study, we use electron paramagnetic resonance spectroscopy, nuclear magnetic resonance spectroscopy, and mass spectrometry to assess the radiation stability of ILs based on such "sweet" sulfonyl imide anions. Our results suggest that saccharinate and o-benzenedisulfonimide are remarkably stable to radiation-induced fragmentation.

4.
J Phys Chem C Nanomater Interfaces ; 115(11): 4642-4648, 2011 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-21532934

RESUMO

Polyhydroxylated molecules, including natural carbohydrates, are known to undergo photooxidation on wide-gap transition metal oxides irradiated by ultraviolet light. In this study, we examine mechanistic aspects of this photoreaction on aqueous TiO(2), α-FeOOH, and α-Fe(2)O(3) particles using electron paramagnetic resonance (EPR) spectroscopy and site-selective deuteration. We demonstrate that the carbohydrates are oxidized at sites involved in the formation of oxo-bridges between the chemisorbed carbohydrate molecule and metal ions at the oxide surface. This bridging inhibits the loss of water (which is the typical reaction of the analogous free radicals in bulk solvent) promoting instead a rearrangement that leads to elimination of the formyl radical. For natural carbohydrates, the latter reaction mainly involves carbon-1, whereas the main radical products of the oxidation are radical arising from H atom loss centered on carbon-1, -2, and -3 sites. Photoexcited TiO(2) oxidizes all of the carbohydrates and polyols, whereas α-FeOOH oxidizes some of the carbohydrates, and α-Fe(2)O(3) is unreactive. These results serve as a stepping stone for understanding the photochemistry on mineral surfaces of more complex biomolecules such as nucleic acids.

5.
J Phys Chem B ; 115(14): 3889-902, 2011 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-21417369

RESUMO

In part 1 of this study, radiolytic degradation of constituent anions in ionic liquids (ILs) was examined. The present study continues the themes addressed in part 1 and examines the radiation chemistry of 1,3-dialkyl substituted imidazolium cations, which currently comprise the most practically important and versatile class of ionic liquid cations. For comparison, we also examined 1,3-dimethoxy- and 2-methyl-substituted imidazolium and 1-butyl-4-methylpyridinium cations. In addition to identification of radicals using electron paramagnetic resonance spectroscopy (EPR) and selective deuterium substitution, we analyzed stable radiolytic products using (1)H and (13)C nuclear magnetic resonance (NMR) and tandem electrospray ionization mass spectrometry (ESMS). Our EPR studies reveal rich chemistry initiated through "ionization of the ions": oxidation and the formation of radical dications in the aliphatic arms of the parent cations (leading to deprotonation and the formation of alkyl radicals in these arms) and reduction of the parent cation, yielding 2-imidazolyl radicals. The subsequent reactions of these radicals depend on the nature of the IL. If the cation is 2-substituted, the resulting 2-imidazolyl radical is relatively stable. If there is no substitution at C(2), the radical then either is protonated or reacts with the parent cation forming a C(2)-C(2) σσ*-bound dimer radical cation. In addition to these reactions, when methoxy or C(α)-substituted alkyl groups occupy the N(1,3) positions, their elimination is observed. The elimination of methyl groups from N(1,3) was not observed. Product analyses of imidazolium liquids irradiated in the very-high-dose regime (6.7 MGy) reveal several detrimental processes, including volatilization, acidification, and oligomerization. The latter yields a polymer with m/z of 650 ± 300 whose radiolytic yield increases with dose (~0.23 monomer units per 100 eV for 1-methyl-3-butylimidazolium trifluorosulfonate). Gradual generation of this polymer accounts for the steady increase in the viscosity of the ILs upon irradiation. Previous studies at lower dose have missed this species due to its wide mass distribution (stretching out to m/z 1600) and broad NMR lines, which make it harder to detect at lower concentrations. Among other observed changes is the formation of water immiscible fractions in hydrophilic ILs and water miscible fractions in hydrophobic ILs. The latter is due to anion fragmentation. The import of these observations for use of ILs as extraction solvents in nuclear cycle separations is discussed.

6.
J Phys Chem B ; 115(14): 3872-88, 2011 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-21417237

RESUMO

Room temperature ionic liquids (IL) find increasing use for the replacement of organic solvents in practical applications, including their use in solar cells and electrolytes for metal deposition, and as extraction solvents for the reprocessing of spent nuclear fuel. The radiation stability of ILs is an important concern for some of these applications, as previous studies suggested extensive fragmentation of the constituent ions upon irradiation. In the present study, electron paramagnetic resonance (EPR) spectroscopy has been used to identify fragmentation pathways for constituent anions in ammonium, phosphonium, and imidazolium ILs. Many of these detrimental reactions are initiated by radiation-induced redox processes involving these anions. Scission of the oxidized anions is the main fragmentation pathway for the majority of the practically important anions; (internal) proton transfer involving the aliphatic arms of these anions is a competing reaction. For perfluorinated anions, fluoride loss following dissociative electron attachment to the anion can be even more prominent than this oxidative fragmentation. Bond scission in the anion was also observed for NO(3)(-) and B(CN)(4)(-) anions and indirectly implicated for BF(4)(-) and PF(6)(-) anions. Among small anions, CF(3)SO(3)(-) and N(CN)(2)(-) are the most stable. Among larger anions, the derivatives of benzoate and imide anions were found to be relatively stable. This stability is due to suppression of the oxidative fragmentation. For benzoates, this is a consequence of the extensive sharing of unpaired electron density by the π-system in the corresponding neutral radical; for the imides, this stability could be the consequence of N-N σ(2)σ(*1) bond formation involving the parent anion. While fragmentation does not occur for these "exceptional" anions, H atom addition and electron attachment are prominent. Among the typically used constituent anions, aliphatic carboxylates were found to be the least resistant to oxidative fragmentation, followed by (di)alkyl phosphates and alkanesulfonates. The discussion of the radiation stability of ILs is continued in the second part of this study, which examines the fate of organic cations in such liquids.

7.
Astrobiology ; 10(4): 425-36, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20528197

RESUMO

We propose that the paucity of organic compounds in martian soil can be accounted for by efficient photocatalytic decomposition of carboxylated molecules due to the occurrence of the photo-Kolbe reaction at the surface of particulate iron(III) oxides that are abundant in the martian regolith. This photoreaction is initiated by the absorption of UVA light, and it readily occurs even at low temperature. The decarboxylation is observed for miscellaneous organic carboxylates, including the nonvolatile products of kerogen oxidation (that are currently thought to accumulate in the soil) as well as alpha-amino acids and peptides. Our study indicates that there may be no "safe haven" for these organic compounds on Mars; oxidation by reactive radicals, such as hydroxyl, is concerted with photocatalytic reactions on the oxide particles. Acting together, these two mechanisms result in mineralization of the organic component. The photooxidation of acetate (the terminal product of radical oxidation of the aliphatic component of kerogen) on the iron(III) oxides results in the formation of methane; this reaction may account for seasonably variable production of methane on Mars. The concomitant reduction of Fe(III) in the regolith leads to the formation of highly soluble ferrous ions that contribute to weathering of the soil particles.


Assuntos
Ácidos Carboxílicos/química , Meio Ambiente Extraterreno , Sedimentos Geológicos/química , Luz , Marte , Metano/síntese química , Aminoácidos/análise , Catálise/efeitos da radiação , Espectroscopia de Ressonância de Spin Eletrônica , Peptídeos/análise , Raios Ultravioleta
8.
Biochemistry ; 47(35): 9251-7, 2008 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-18690706

RESUMO

Electron paramagnetic resonance (EPR) was used to simultaneously study radiation-induced cofactor reduction and damaging radical formation in single crystals of the bacterial reaction center (RC). Crystals of Fe-removed/Zn-replaced RC protein from Rhodobacter ( R.) sphaeroides R26 were irradiated with varied radiation doses at cryogenic temperature and analyzed for radiation-induced free radical formation and alteration of light-induced photosynthetic electron transfer activity using high-field (HF) D-band (130 GHz) and X-band (9.5 GHz) EPR spectroscopies. These analyses show that the formation of radiation-induced free radicals saturated at doses 1 order of magnitude smaller than the amount of radiation at which protein crystals lose their diffraction quality, while light-induced RC activity was found to be lost at radiation doses at least 1 order of magnitude lower than the dose at which radiation-induced radicals exhibited saturation. HF D-band EPR spectra provide direct evidence for radiation-induced reduction of the quinones and possibly other cofactors. These results demonstrate that substantial radiation damage is likely to have occurred during X-ray diffraction data collection used for photosynthetic RC structure determination. Thus, both radiation-induced loss of photochemical activity in RC crystals and reduction of the quinones are important factors that must be considered when correlating spectroscopic and crystallographic measurements of quinone site structures.


Assuntos
Complexo de Proteínas do Centro de Reação Fotossintética/química , Complexo de Proteínas do Centro de Reação Fotossintética/efeitos da radiação , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Radicais Livres , Ferro/química , Modelos Moleculares , Conformação Proteica , Rhodobacter sphaeroides/metabolismo , Difração de Raios X , Zinco/química
9.
J Phys Chem A ; 111(45): 11540-51, 2007 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-17929904

RESUMO

Pulse radiolysis experiments were performed on hydrogenated, alkaline water at high temperatures and pressures to obtain rate constants for the reaction of hydrated electrons with hydrogen atoms (H* + e-(aq) --> H(2) + OH-, reaction 1) and the bimolecular reaction of two hydrated electrons (e-(aq) + e-(aq) --> H(2) + 2 OH-, reaction 2). Values for the reaction 1 rate constant, k(1), were obtained from 100 - 325 degrees C, and those for the reaction 2 rate constant, k(2), were obtained from 100 - 250 degrees C, both in increments of 25 degrees C. Both k(1) and k(2) show non-Arrhenius behavior over the entire temperature range studied. k(1) shows a rapid increase with increasing temperature, where k(1) = 9.3 x 10(10) M(-1) s(-1) at 100 degrees C and 1.2 x 10(12) M(-1) s(-1) at 325 degrees C. This behavior is interpreted in terms of a long-range electron-transfer model, and we conclude that e-aq diffusion has a very high activation energy above 150 degrees C. The behavior of k(2) is similar to that previously reported, reaching a maximum value of 5.9 x 10(10) M(-1) s(-1) at 150 degrees C in the presence of 1.5 x 10(-3) m hydroxide. At higher temperatures, the value of k(2) decreases rapidly and above 250 degrees C is too small to measure reliably. We suggest that reaction 2 is a two-step reaction, where the first step is a proton transfer stimulated by the proximity of two hydrated electrons, followed immediately by reaction 1.

10.
J Phys Chem B ; 111(40): 11786-93, 2007 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-17877387

RESUMO

Radical intermediates generated in radiolysis and photoionization of ionic liquids (ILs) composed of ammonium, phosphonium, pyrrolidinium, and imidazolium cations and bis(triflyl)amide, dicyanamide, and bis(oxalato)borate anions have been studied using magnetic resonance spectroscopy. Large yields of terminal and penultimate C-centered radicals are observed in the aliphatic chains of the phosphonium, ammonium, and pyrrolidinium cations, but not for imidazolium cation. This pattern is indicative of efficient deprotonation of a hole trapped on the parent cation (the radical dication) that competes with rapid electron transfer from a nearby anion. This charge transfer leads to the formation of stable N- or O-centered radicals; the dissociation of parent anions is a minor pathway. Addition of 10-40 wt % of trialkyl phosphate (a common extraction agent) has relatively little effect on the fragmentation of the ILs. The yield of the alkyl radical fragment generated by dissociative electron attachment to the trialkyl phosphate is <4% of the yield of the radical fragments derived from the IL solvent. The import of these observations for radiation stability of the prospective nuclear cycle extraction systems based upon the ILs is discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...